6. Übung ”Bioinformatik”, SS 15

Aufgabe 1: (5 Credits)
Consider the RNA sequence

\[s = GGGCACAUGGGCAGUGCCACUGAGCC \]

with secondary structure

\[S = \{(1,30), (2,29), (4,17), (5,16), (6,15), (8,14), (9,13), (18,26), (19,25), (20,24)\} \]

and assume \(\Theta = 0 \).

(a) Draw the structure in dot-bracket notation and as another graphical representation of your choice.

(b) Prove or disprove: \(S \cup b_{p_i} \) is a secondary structure for \(s \) with \(b_{p_1} = \{(10,22)\}, b_{p_2} = \{(10,12)\}, b_{p_3} = \{(10,13)\} \).

Aufgabe 2: (5+5=10 Credits)
Let \(S(n) \) denote the number of possible secondary structures of size \(n \) and \(S(n,k) \) denote the number of possible secondary structures of size \(n \) that have exactly \(k \) basepairs.

(a) Show that for all \(n \geq 2 \) holds:

\[S(n) \geq 2^{n-2} \]

(b) Let \(S(n,0) = 1 \) for all \(n \) and \(S(n,k) = 0 \) for \(k \geq n/2 \). Show that for all \(n \geq 2 \) holds:

\[S(n+1,k+1) = S(n,k+1) + \sum_{j=1}^{n-1} \sum_{i=0}^{k} S(j-1,i)S(n-j,k-i) \]

Aufgabe 3: (5 Credits)
Let \(\mathcal{A} = \{A,C,G,U\} \), \(\mathcal{B} = \{AU, UA, GC, CG, GU, UG\} \cup \{AA\} \) and \(S_1, \ldots, S_k \) secondary structures of size \(n \) (\(\Theta = 0 \)). Prove or disprove:

(a) If \(G(S_1, \ldots, S_k) \) is bipartite then there is a sequence \(s \in \mathcal{A}^n \) realizing all secondary structures \(S_1, \ldots, S_k \).

(b) If there is a sequence \(s \in \mathcal{A}^n \) realizing all secondary structures \(S_1, \ldots, S_k \) then \(G(S_1, \ldots, S_k) \) is bipartite.

Deadline: Monday - June 15th, 2015 - 4.15pm