3. Fragen und Aufgaben

Existiert stets (mindestens) eine optimale Lösung?
Ist diese vielleicht sogar (stets) eindeutig bestimmt?
Wird das immer ein Eckpunkt sein oder war das im Beispiel ein Zufall?
Wie kann man diese Lösung berechnen (ermitteln)?
Fehlerabschätzung, wenn man in einem noch nicht optimalen Punkt aufhört?

3.1. Die allgemeine Aufgabenstellung der linearen Optimierung (1. und 2. Normalform, Begriffe)

3.2. Es sei \(c^T = (c_1, \ldots, c_n) \in \mathbb{R}^n\) und
\[
A = \begin{pmatrix}
h_{1}^T \\
\vdots \\
h_{m}^T
\end{pmatrix}
\]
eine \(m \times n\)-Matrix, \(b = \begin{pmatrix} b_1 \\
\vdots \\
b_m
\end{pmatrix} \in \mathbb{R}^m\).

Das lineare Optimierungsproblem (Extremwertaufgabe)
\[
c^T x = \min!
\]
bei
\[
Ax \leq b
\]
(komponentenweise, d. h. \(h_i^T \geq b_i \ \forall i = 1, \ldots, m, \ \{1, \ldots, m\} =: I\)
endliche Indexmenge)
d. h.
\[
\sum_{j=1}^{n} c_j x_j = \min!
\]
bei
\[
\sum_{j=1}^{n} h_{ij} x_j \leq b_i \quad i \in I.
\]
3.3. Beispiel \((n = 1)\)

\[
2x_1 = \min \quad \text{bei} \quad \begin{align*}
3x_1 & \geq -1 \\
-4x_1 & \geq -8 \\
2x_1 & \geq 1
\end{align*} \quad -3x_1 \leq 1 \quad 4x_1 \leq 8 \quad -2x_1 \leq -1
\]

\[
c = (2) \quad A = \begin{pmatrix}
-3 \\
+4 \\
-2
\end{pmatrix} \quad b = \begin{pmatrix}
+1 \\
+8 \\
-1
\end{pmatrix}
\]

zulässiger Bereich:

\[
x_1 \geq -\frac{1}{3} \quad x_1 \leq 2 \\
x_1 \geq \frac{1}{2}
\]

\[
L = \left\{ x_1 \mid \frac{1}{2} \leq x_1 \leq 2 \right\}
\]

\[
\min \text{ bei } x_1 = \frac{1}{2} \quad \max \text{ bei } x_1 = 2
\]

In dem Beispiel Kühe / Schafe schneiden sich die Geraden \(6x_1 + x_2 = 400\) und \(x_1 = 0\) in \((0, 400)\) aber dieser Punkt verletzt die Forderung \(x_2 \leq 200!\)

Nicht alle Schnittpunkte von begrenzenden Geraden sind erlaubte (zugelassene) Eckpunkte!
3.4. Definition: \(P = \{ x \mid Ax \leq b \} \) heißt Menge der zulässigen Punkte. \(x \in P \) heißt zulässig (d. h. \(h_i^T x \leq b_i \ \forall i \)). \(\widehat{x} \) ist optimal, falls \(\widehat{x} \in P \) und \(c^T \widehat{x} \geq c^T x \ \forall x \in P \).

Beachte: \(Ax \leq b \) komponentenweise. \(\neg (Ax \leq b) \) nicht \(Ax \geq b \).

3.5. Satz: \(\overline{x} \) ist eine optimale Lösung von \(c^T x = \min \) bzgl. \(Ax \leq b \iff \overline{x} \) ist optimal für \((-c)^T x = \max \) bzgl. \(Ax \leq b \).

Skizze:

![Skizze](image)

Beweis:

\[
c^T \overline{x} \leq c^T x \ \forall x \in P \iff (-c)^T \overline{x} \geq c^T x \ \forall x \in P.
\]

3.6. Wenn alle (oder einige) Bedingungen in der Form

\[
a_{i1} x_1 + a_{i2} x_2 + \cdots + a_{in} x_n \geq b_i \quad i \in J \subseteq I
\]

gegeben sind, führe man sie durch Multiplikation mit \((-1)\) auf eine ”\(\leq\)“ Ungleichung zurück:

\[
(-a_{i1}) x_1 + (-a_{i2}) x_2 + \cdots + (-a_{in}) x_n \leq -b_i \quad i \in J
\]

Wenn Gleichungen

\[
a_{i1} x_1 + \cdots + a_{in} x_n = b_i
\]

auftreten, so notiere man jede als 2 Ungleichungen

\[
a_{i1} x_1 + \cdots + a_{in} x_n \leq b_i
\]

\[
(-a_{i1}) x_1 + \cdots + (-a_{in}) x_n \leq (-b_i)
\]
3.7. Die 2. Normalform

Manchmal ist es günstiger, als Nebenbedingungen nur Gleichungen $\tilde{A}x = b$ und Vorzeichenrestriktionen $x \geq 0$ zuzulassen. Simplexalgorithmus benutzt Algorithmen zur Lösung von linearen GLS.

Ist nämlich $Ax \leq b$, also

$$
\begin{align*}
\begin{cases}
a_{11}x_1 + \cdots + a_{1n}x_n &\leq b_1 \\
\vdots & \quad \vdots \\
a_{m1}x_1 + \cdots + a_{mn}x_n &\leq b_m
\end{cases}
\end{align*}
\implies
\begin{align*}
\begin{cases}
a_{11}x_1 + \cdots + a_{1n}x_n + x_{n+1} &= b_1 \\
\vdots & \quad \vdots \\
a_{m1}x_1 + \cdots + a_{mn}x_n + x_{n+m} &= b_m
\end{cases}
\end{align*}
$$

und $x_{n+1} \geq 0, \ldots, x_{n+m} \geq 0$

Beachte: Dimension n ist um m erhöht worden!

Durch geeignete Transformation kann man stets $x_i \geq 0 \ \forall i$ erreichen, u. U. Zunahme von Nebenbedingungen!

Setze also

$$
\tilde{A} = (A|E_{mm}) \quad \tilde{x} = (x_1, \ldots, x_n, x_{n+1}, \ldots, x_{n+m})
$$

$$
\tilde{A}\tilde{x} = b, \quad \tilde{x} \geq 0
$$

Beide Probleme sind gleichwertig (Form und Dimension können verschieden sein!)

3.8. Satz: Für LINOP $c^T x = \text{min}$! bei $Ax \leq b$ mit $P = \{x | Ax \leq b\}$ gilt genau einer der drei Fälle

(i) $P = \emptyset$
(ii) P ist unbeschränkt und $\inf_{x \in P} = -\infty$
(iii) $\exists \overline{x} \in P$ mit $c^T \overline{x} \leq c^T x \ \forall x \in P$ (Minimum existiert).

Wenn P Eckpunkte besitzt, existiert stets ein Eckpunkt $\hat{x} \in P$, so daß $c^T \hat{x} = c \overline{x} \leq c x \ \forall x \in P$ ist.

Wir wollen jetzt bei (iii) immer Existenz von Eckpunkten von P voraussetzen.
Illustration:
(i) $n = 1, x \geq 1, x \leq -1, \ P = \emptyset$.
(ii) $n = 1, x \geq 1$

Existenz einer Lösung hängt von c ab!

(iii) $(x_1, x_2) : 0 \leq x_2 \leq 1$

$3x_2 = \min!$ keine Eckpunkte, aber optimale Lösungen!