Genomanalyse

Vorlesung *Genomanalyse* vom 29.11.2011
References

• my script at http://gobics.de/mario/genomanalyse/script.pdf
• "Biological Sequence Analysis", Durbin, Eddy, Krogh, Mitchison, Cambridge University Press
• "Bioinformatik Interaktiv", Rainer Merkl und Stephan Waack, Wiley, 2009
Markov Chain

Definition (Markov Chain (Markow-Kette))

A sequence of random variables X_1, X_2, \ldots with values in a discrete (here: finite) set Q is called a **Markov chain** if for all $i > 0$ and all $x_1, x_2, \ldots, x_{i+1} \in Q$

$$P(X_{i+1} = x_{i+1} \mid X_1 = x_1, \ldots, X_i = x_i) = P(X_{i+1} = x_{i+1} \mid X_i = x_i),$$

where defined.

The sequence is called a **homogenous** Markov chain if $P(X_{i+1} = s \mid X_i = r)$ does not depend on i ($r, s \in Q$), otherwise it is called **inhomogeneous**.

For a homogenous Markov chain, the matrix $A = (a_{r,s})_{r,s \in Q}$ with $a_{r,s} = P(X_{i+1} = s \mid X_i = r)$ is called the **transition matrix**.

The set Q is called **state space**. If $X_i = q$, then we say that the process is in **state** q at **time** i.

If $X_i = r, X_{i+1} = s$ then the process is said to make a **transition** from r to s.
Example: Markov Chain

Example (drunken guy)

After participating in a “pub crawl” a drunken guy is walking around Berlin. At each intersection he is stopping, turning around and randomly picking a direction to go next, independently of what happened in the past (no memory where he has been before and where he came from).

Example (random walk of drunken guy)

\[X_i := i\text{-th visited intersection} \]
\[X_1, X_2, \ldots \text{ is a homogenous Markov chain with state space } Q = \text{set of all intersections of Berlin} \]
Markov Chain

Intuitive interpretation

\[
P(X_{i+1} = x_{i+1} \mid X_1 = x_1, \ldots, X_i = x_i) = P(X_{i+1} = x_{i+1} \mid X_i = x_i).
\]

informally means

The future \((X_{i+1})\)

is independent of the past \((X_1, \ldots, X_{i-1})\)
given the present \((X_i)\).

Example (sober guy)

A sober guy is meandering in a foreign city. He remembers some intersections where he has been and previous choices for directions. E.g. he avoids a direction that he has previously taken.
The sequence of visited intersections is not a Markov chain.
Example: Markov Chain

Example

transition graph

transition matrix

\[
A = (a_{r,s})_{1 \leq r, s \leq 4} = \\
= \begin{pmatrix}
0.3 & 0.6 & 0.1 & 0 \\
0 & 0.5 & 0.5 & 0 \\
0.8 & 0 & 0 & 0.2 \\
0 & 0 & 1 & 0 \\
\end{pmatrix}
\]

\[
Q = \{1, 2, 3, 4\}
\]

\[
P(X_1 = q) = 1/4 \quad (q \in Q)
\]

\[
P(X_{i+1} = x_{i+1} \mid X_i = x_i, \ldots, X_1 = x_1) = a_{x_i, x_{i+1}} \quad (i > 1, x_1, \ldots, x_{i+1} \in Q)
\]
Observation

Let \(n > 1 \) and \(x_1, \ldots, x_n \in Q \). Then

\[
P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) = P(X_1 = x_1) \cdot a_{x_1, x_2} \cdot a_{x_2, x_3} \cdots a_{x_{n-1}, x_n}.
\]
Notation

Simpler Notation

Instead of

\[P(X_{i+1} = x_{i+1} \mid X_1 = x_1, \ldots, X_i = x_i) = P(X_{i+1} = x_{i+1} \mid X_i = x_i), \]

for all \(x_1, x_2, \ldots, x_{i+1} \in Q \)

we will write

\[P(X_{i+1} \mid X_1, \ldots, X_i) = P(X_{i+1} \mid X_i). \]
Hidden Markov Model

Definition (HMM)

Let Σ be a finite set. A hidden Markov model (HMM) consists of a Markov chain

$$X_1, X_2, \ldots$$

over some state space Q and a sequence of random variables

$$Y_1, Y_2, \ldots$$

with elements in Σ such that

$$P(X_i \mid X_1, \ldots, X_{i-1}, Y_1, \ldots, Y_{i-1}) = P(X_i \mid X_{i-1})$$

and

$$P(Y_i \mid X_1, \ldots, X_i, Y_1, \ldots, Y_{i-1}) = P(Y_i \mid X_i).$$

Y_i is called the i-th emission.
Σ is called the emission alphabet.
Y_1, Y_2, \ldots is called the emission sequence.
X_i is called the i-th hidden state.
Hidden Markov Model

HMM
- in typical applications
 - the emissions Y_i are *observed*
 - the states X_i are *not observed* (“hidden”)
- $P(Y_i | X_i)$ is called the emission distribution.
- the states are sometimes called *labels*, Q the *label set*

Notation

We will denote the transition probabilities with $a_{r,s}$:

$$a_{r,s} = P(X_i = s | X_{i-1} = r)$$

and the emission probabilities with $b(q,s)$:

$$b(q,s) = P(Y_i = s | X_i = q) \quad (q \in Q, s \in \Sigma).$$
Example: Hidden Markov Model

Example (The occasionally dishonest casino)

- In a casino two dice are used
 - a fair (F) die: \(P(1) = P(2) = \cdots = P(6) = 1/6 \)
 - a loaded (L) die: \(P(6) = 1/2, P(1) = \cdots = P(5) = 1/10 \)
- the dice are otherwise indistinguishable for the players
- a die is repeatedly thrown starting with the fair die
- each time after a die is thrown, there is a chance that the casino exchanges the dice (F->L or L->F)
- when a fair/loaded die was thrown the chance of switching to the loaded/fair is 5% and 15%, respectively

Let \(Y_1, Y_2, \ldots \in \Sigma := \{1, 2, \ldots, 6\} \) be the sequence of observed numbers.
Let \(X_1, X_2, \ldots \in Q := \{F, L\} \) be the corresponding labels of the dice

Example (Example Output)

\[Y_1, Y_2, \ldots = 52641423616661666252536234666636253615112566335226253322366641443 \]
\[X_1, X_2, \ldots = FFFFFFFFFLLL \]
The occasionally dishonest casino

Dishonest Casino

The emission sequence Y_1, Y_2, \ldots and hidden state sequence X_1, X_2, \ldots constitute a HMM. The sequence X_1, X_2, \ldots is a Markov chain with $X_1 \equiv F$ and transition distribution

$$P(X_i = s \mid X_{i-1} = r) = a_{r,s}, \quad \text{where } (a_{r,s})_{r,s \in Q} = \begin{pmatrix} .95 & .05 \\ .15 & .85 \end{pmatrix}$$
The occasionally dishonest casino

Emission distribution

The emission distribution is

\[b(q, s) = P(Y_i = s \mid X_i = q) = \begin{cases}
\frac{1}{6}, & \text{if } q = F \\
\frac{1}{10}, & \text{if } q = L \text{ and } s \neq 6 \\
\frac{1}{2}, & \text{if } q = L \text{ and } s = 6
\end{cases} \]

\((s \in \{1, 2, \ldots, 6\}, q \in \{F, L\}).\)
Applications of HMMs

Applications in

- speech recognition
- part-of-speech tagging
- Bioinformatics (gene prediction, models of a protein family, alignments, ...)

1.14
“Decoding” an HMM

Decoding: Finding the hidden states

In a typical application of HMMs, the emission sequence is known (“observed”) and finite

\[Y_1 = y_1, \ Y_2 = y_2, \ldots, \ Y_n = y_n \]

and the state sequence is unknown (“hidden”) and needs to be predicted.

Let \(Y := (Y_1, \ldots, Y_n) \)
\(y := (y_1, \ldots, y_n) \)
\(X := (X_1, \ldots, X_n) \).

One popular way of decoding is to use

\[\hat{x} \in \arg\max_{x \in Q^n} P(X = x \mid Y = y) \] \hspace{1cm} (1)

as prediction of the unknown sequence of hidden states.
Viterbi-Decoding

Meaning of (1)

- $P(X = x \mid Y = y)$ is called the posterior probability of x, also: *a posteriori*
- $P(X = x \mid Y = y)$ is the probability of state sequence x given that the emission y is observed
- Frequently, a unique x maximizes $P(X = x \mid Y = y)$. If the maximizing x is not unique then
 \[
 \text{argmax}_{x \in \Sigma^n} P(X = x \mid Y = y)
 \]
 denotes the set of all state sequences having maximal posterior probability.
- \hat{x} is a (the) most likely state sequence given the observed emission sequence
- (1) is called the MAP-estimator (maximum a posteriori)
Viterbi Algorithm

Joint probability of states and emission

Because

\[P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}, \tag{2} \]

maximizing \(P(X = x \mid Y = y) \) over \(x \) is equivalent to maximizing \(P(X = x, Y = y) \) over \(x \).

Idea: Dynamic Programming

We find the most likely state sequence

\[\arg\max_{x \in \mathbb{Q}^n} P(X = x, Y = y) \]

using dynamic programming.
Joint Probability of x and y

Product formula for joint probability of x and $y

\[
P(X = x, Y = y) = P(X_1 = x_1) \cdot P(Y_1 = y_1 \mid X_1 = x_1) \\
\cdot \prod_{i=2}^{n} \left\{ P(X_i = x_i \mid X_1 = x_1, \ldots, X_{i-1} = x_{i-1}, Y_1 = y_1, \ldots, Y_{i-1} = y_{i-1}) \right\} \\
P(Y_i = y_i \mid X_1 = x_1, \ldots, X_i = x_i, Y_1 = y_1, \ldots, Y_{i-1} = y_{i-1}) \right\}
\]

\[
= P(X_1 = x_1) \cdot P(Y_1 = y_1 \mid X_1 = x_1) \cdot \prod_{i=2}^{n} P(X_i = x_i \mid X_{i-1} = x_{i-1}) \cdot P(Y_i = y_i \mid X_i = x_i)
\]

(3)

Here, the first line is an application of the general formula $P(A_1 \cap A_2 \cap A_3 \cap \cdots) = P(A_1)P(A_2 \mid A_1)P(A_3 \mid A_1 \cap A_2) \cdots$ applied to the sequence of events $A_1 = \{X_1 = x_1\}$, $A_2 = \{Y_1 = y_1\}$, $A_3 = \{X_2 = x_2\}$, \cdots.

(3) follows from the two independence requirements in the definition of HMMs.

Substituting the variables for transition and emission probabilities, we get

\[
P(X = x, Y = y) = P(X_1 = x_1) \cdot b(x_1, y_1) \cdot \prod_{i=2}^{n} a_{x_{i-1}, x_i} \cdot b(x_i, y_i).
\]
Viterbi Algorithm

Definition (Viterbi variables)

Let

\[
\gamma(q, i) := \max_{x_1, \ldots, x_{i-1} \in Q} P((X_1, \ldots, X_i) = (x_1, \ldots, x_{i-1}, q), (Y_1, \ldots, Y_i) = (y_1, \ldots, y_i))
\]

\[
= \text{joint probability for most likely state sequence up to } i \text{ that ends in state } q
\]

for states \(q \in Q \) and time points \(1 \leq i \leq n \).

Viterbi recursion

\[
\gamma(q, i) = b(q, y_i) \cdot \max_{q' \in Q} a_{q', q} \cdot \gamma(q', i - 1) \quad (q \in Q, 1 < i \leq n)
\]

Initial cases:

\[
\gamma(q, 1) = P(X_1 = q) \cdot b(q, y_1)
\]
Viterbi Algorithm

Proof of Viterbi recursion...

Initial case: Let \(q \in Q \). Then by definition of \(\gamma \) and of the emission distribution we have

\[
\gamma(q, 1) = P(X_1 = q, Y_1 = y_1) \\
= P(X_1 = q) \cdot P(Y_1 = y_1 | X_1 = q) \\
= P(X_1 = q) \cdot b(q, y_1).
\]

Now, let \(1 < i \leq n \).

\[
\gamma(q, i) = \max_{x_1, \ldots, x_{i-1} \in Q} P((X_1, \ldots, X_i) = (x_1, \ldots, x_{i-1}, q), (Y_1, \ldots, Y_i) = (y_1, \ldots, y_i)) \\
= \max_{x_1, \ldots, x_{i-1} \in Q} \left\{ P((X_1, \ldots, X_{i-1}) = (x_1, \ldots, x_{i-1}), (Y_1, \ldots, Y_{i-1}) = (y_1, \ldots, y_{i-1})) \\
\cdot P(X_i = q | (X_1, \ldots, y_{i-1})) \cdot P(Y_i = y_i | X_i = q, (X_1, \ldots, y_{i-1})) \right\} \\
= \max_{x_1, \ldots, x_{i-1} \in Q} \left\{ P((X_1, \ldots, y_{i-1})) \\
\cdot P(X_i = q | X_{i-1} = x_{i-1}) \cdot P(Y_i = y_i | X_i = q) \right\}
\]

\[(4)\] (Equally colored expressions are equal.)

Here, the second line follows as \(P(A, B, C) = P(A) \cdot P(B | A) \cdot P(C | B, A) \) holds for any events \(A, B, C \).

The left term in (4) is equal to the corresponding term in the previous line because \(P(X_i | X_1, \ldots, X_{i-1}, Y_1, \ldots, Y_{i-1}) = P(X_i | X_{i-1}) \) by definition of an HMM.

The right term in (4) is equal to the corresponding term in the previous line because \(P(Y_i | X_1, \ldots, X_i, Y_1, \ldots, Y_{i-1}) = P(Y_i | X_i) \) by definition of an HMM.
Proof of Viterbi recursion.

We continue

\[\gamma(q, i) = b(q, y_i) \cdot \max_{x_{i-1} \in Q} \left\{ \max_{x_1, \ldots, x_{i-2} \in Q} P(X_i = q \mid X_{i-1} = x_{i-1}) \cdot P((X_1, \ldots, Y_{i-1})) \right\} \]
\[= b(q, y_i) \cdot \max_{x_{i-1} \in Q} \left\{ ax_{i-1}, q \cdot \max_{x_1, \ldots, x_{i-2} \in Q} P((X_1, \ldots, y_{i-1})) \right\} \]
\[= b(q, y_i) \cdot \max_{x_{i-1} \in Q} \left\{ ax_{i-1}, q \cdot \gamma(x_{i-1}, i - 1) \right\} \]

Equation 5 holds because \(b(q, y_i) = P(Y_i = y_i \mid X_i = q) \) is independent of \(x_1, \ldots, x_{i-1} \).
Equation 6 holds because \(ax_{i-1}, q = P(X_i = q \mid X_{i-1} = x_{i-1}) \) is independent of \(x_1, \ldots, x_{i-2} \).
Equation 7 holds by definition of \(\gamma \) applied to state \(x_{i-1} \) and time \(i - 1 \).
Replacing the maximizing variable \(x_{i-1} \) with \(q' \) yields the claim from the Viterbi recursion. \(\square \)
Viterbi Algorithm

$
\begin{align*}
1: \quad & \textbf{for } q \in Q \textbf{ do} \\
2: \quad & \gamma(q, 1) \leftarrow P(X_1 = q) \cdot b(q, y_1) \quad /\!\!/ \text{ initialization of boundary cases} \\
3: \quad & \textbf{end for} \\
4: \quad & \textbf{for } i = 2 \textbf{ to } n \textbf{ do} \\
5: \quad & \quad \textbf{for } q \in Q \textbf{ do} \\
6: \quad & \quad \quad \text{update } \gamma(q, i) \text{ according to Viterbi recursion} \\
7: \quad & \quad \textbf{end for} \\
8: \quad & \textbf{end for} \\
9: \quad & \textbf{// backtracking starts} \\
10: \quad & x \leftarrow \langle \text{empty list} \rangle \quad /\!\!/ \text{ } x \text{ will hold most likely state sequence} \\
11: \quad & i \leftarrow n \\
12: \quad & q \leftarrow \text{argmax}_{q \in Q} \gamma(q, n) \\
13: \quad & \textbf{repeat} \\
14: \quad & \quad \text{add } q \text{ to front of } x \\
15: \quad & \quad q \leftarrow \text{argmax}_{q' \in Q} a_{q', q} \cdot \gamma(q', i - 1) \\
16: \quad & \quad i \leftarrow i - 1 \\
17: \quad & \textbf{until } i = 0 \\
18: \quad & \text{output } x \text{ as solution}
\end{align*}$
Complexity of Viterbi Algorithm

Complexity

- **time**: $O(|Q|^2 \cdot n)$
 (line 6 takes time proportional to $|Q|$ and is executed $|Q| \cdot (n - 1)$ times)

- **space**: $O(|Q| \cdot n)$
 (to store the array γ)
Posterior Probabilities of States

Probabilities of States

- **prior** (*a priori*) probability of states $P(X_i = q)$ is given through Markov chain alone

- **posterior** (*a posteriori*) probability of states $P(X_i = q | Y = y)$ depends on the observed data

- e.g. $P(X_i = L | Y = y)$ is relatively high if many ’6’ are rolled around time i
We have
\[
P(X_i = q \mid Y = y) = \frac{P(X_i = q, Y = y)}{P(Y = y)} \begin{cases} \alpha(q, i) & \text{for } q \in Q, 1 \leq i < n \\
\beta(q, i) & \text{for } q \in Q, 1 \leq i < n \end{cases}
\]

The last equation holds because \(Y_{i+1}, \ldots, Y_n \) depend on \(X_i, Y_1, \ldots, Y_i \) only through \(X_i \).

Define variables \(\alpha(q, i), \beta(q, i) \) for \(q \in Q, 1 \leq i < n \) called forward and backward probabilities, respectively.

Motivation: Forward and backward probabilities can be calculated using Dynamic Programming.
Forward Algorithm

Definition (Forward Variables)

\[\alpha(q, i) := P(X_i = q, (Y_1, \ldots, Y_i) = (y_1, \ldots, y_i)) \quad (q \in Q, i \geq 1) \]

Forward Recursion

We have for \(q \in Q \)

\[\alpha(q, i) = b(q, y_i) \sum_{q' \in Q} a_{q', q} \cdot \alpha(q', i - 1) \quad (i > 1) \]

Initial case

\[\alpha(q, 1) = P(X_1 = q)b(q, y_i) \]

Proof: Exercise
Forward Algorithm

1: \textbf{for} \ i = 1 \ \textbf{to} \ n \ \textbf{do}
2: \textbf{for} \ q \ \in \ Q \ \textbf{do}
3: \quad \text{compute } \alpha(q, i) \ \text{according to forward recursion}
4: \textbf{end for}
5: \textbf{end for}

\text{time: } O(|Q|^2 \cdot n)
\text{space: } O(|Q| \cdot n)
Backward Algorithm

Definition (Backward Variables)

Let $n > 1$ be given. Define

$$
\beta(q, i) := P((Y_{i+1}, \ldots, Y_n) = (y_{i+1}, \ldots, y_n) | X_i = q) \quad (q \in Q, i < n)
$$

Backward Recursion

We have for all $q \in Q$

$$
\beta(q, i) = \sum_{q' \in Q} a_{q, q'} b(q', y_{i+1}) \cdot \beta(q', i + 1) \quad (1 \leq i < n)
$$

Initial case

$$
\beta(q, n) := 1.
$$
Backward Algorithm

1. for $i = n$ to 1 do
2. for $q \in Q$ do
3. compute $\beta(q, i)$ according to backward recursion
4. end for
5. end for

time: $O(|Q|^2 \cdot n)$
space: $O(|Q| \cdot n)$
Probabilities of Emission

Probability of Emission $y = (y_1, \ldots, y_n)$

We can now compute $P(Y = y)$ with the law of total probability using either the forward variables

$$P(Y = y) = \sum_{q \in Q} P(X_n = q, Y = y) = \sum_{q \in Q} \alpha(q, n)$$

or the backward variables

$$P(Y = y) = \sum_{q \in Q} P(X_1 = q, Y = y)$$

$$= \sum_{q \in Q} P(X_1 = q)b(q, y_1) \cdot P((Y_2, \ldots, Y_n) = (y_2, \ldots, y_n) | X_1 = q)$$

$$= \sum_{q \in Q} P(X_1 = q)b(q, y_1) \cdot \beta(q, 1).$$
Now we can compute the posterior probability of a state q at time point i

$$P(X_i = q \mid Y = y) = \frac{\alpha(q, i) \cdot \beta(q, i)}{P(Y = y)}$$

Example (posterior probability of F)

In each column i the number of stars measures $P(X_i = F \mid Y = y)$.

1* = 10%