Prokaryotes, Eukaryotes

Prokaryotes

Prokaryotes are the set of species that lack a cell nucleus.
\{\text{prokaryotes}\} = \{\text{bacteria}\} \cup \{\text{archea}\}

Eukaryotes

Eukaryotes are the set of species whose cells have a nucleus.
May be unicellular (e.g. some algae) or multicellular (plants and animals).
Prokaryotes, Eukaryotes

- the structure of prokaryotic genes is less complex than those of eukaryotes.
- prokaryotic gene finding is
 - easier,
 - algorithmically less interesting
 - and can be considered a special case (missing introns).
- We will therefore restrict lecture to eukaryotes.
Structure of a eukaryotic gene

UTR = UnTranslated Region = part of mRNA that is not translated

CDS = Coding Sequence = part of mRNA (exon) that is translated
Structure of a eukaryotic gene

DNA

pre mRNA

mRNA

coding sequence of gene A

protein A

coding sequence of gene B

protein B

transcription

splicing

translation and folding

UTR = UnTranslated Region = part of mRNA that is not translated
CDS = Coding Sequence = part of mRNA (exon) that is translated

Translation

- **coding** RNA sequence
- **translation**
- **amino acid sequence**
- **folding**
- **protein**

The One-Dimensional Chaining Problem

- Simple Approach to Gene Finding
- Gene Finding with HMMs
- Generalized HMMs
- Model Design
- Training

What Do Genes Look Like?

- Statistical Features of Genes
- The One-Dimensional Chaining Problem
- Simple Approach to Gene Finding

Statistical Features of Genes

- “universeller” genetischer Code

<table>
<thead>
<tr>
<th>Codon (DNA)</th>
<th>Aminosäuren</th>
</tr>
</thead>
<tbody>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>61</td>
<td>20</td>
</tr>
</tbody>
</table>

- One of 3 stop codons only at end
- Translation
- Folding

Gene-Finding-Problem

- Introduction to Gene-Finding-Problem
- Statistical Features of Genes
- The One-Dimensional Chaining Problem
- Simple Approach to Gene Finding
- Gene Finding with HMMs
- Generalized HMMs
- Model Design
- Training
Translation

- RNA sequence → codons → amino acid sequence → protein
- Intron: only at end
- One of 3 stop codons

```
Translation
  coding RNA sequence  →  codons  →  amino acid sequence  →  protein
```

```
<table>
<thead>
<tr>
<th>Codon (DNA)</th>
<th>Amino-säure</th>
</tr>
</thead>
<tbody>
<tr>
<td>aaa</td>
<td>K</td>
</tr>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>
```

```
"universeller" genetischer Code
```

```
61 20
```

```
Kodons Aminosäuren
```
Translation

RNA sequence

protein

coding

translation

amino acid sequence

folding

intron

codons

one of 3 stop codons only at end

translation in RNA sequence

example: AUG UAU GAG...

protein sequence: M Y E...

"universeller" genetischer Code

<table>
<thead>
<tr>
<th>Codon (DNA)</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>20</td>
</tr>
</tbody>
</table>

Kodons Aminosäuren
Translation

What Do Genes Look Like?

Statistical Features of Genes
The One-Dimensional Chaining Problem
Simple Approach to Gene Finding
Gene Finding with HMMs
Generalized HMMs
Model Design
Training

Introduction to Gene-Finding-Problem

Translation

RNA sequence → amino acid sequence → protein

Gene Finding with HMMs

“universeller” genetischer Code

<table>
<thead>
<tr>
<th>Kodon (DNA)</th>
<th>Aminosäure</th>
</tr>
</thead>
<tbody>
<tr>
<td>aac</td>
<td>N</td>
</tr>
<tr>
<td>aag</td>
<td>K</td>
</tr>
<tr>
<td>aat</td>
<td>N</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>atg</td>
<td>M</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Kodons</th>
<th>Aminosäuren</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>20</td>
</tr>
</tbody>
</table>
Signals

transcription start site
donor (5') splice site
acceptor (3') splice site
transcription termination site

chr2L:
1187000 1188000 1189000 1190000 1191000 1192000 1193000 1194000 1195000 1196000 1197000

FlyBase Protein-Coding Genes
CG5001

a fruitfly gene

--->

translation start site

1191900 1191905 1191910 1191915 1191920 1191925 1191930 1191935 1191940 1191945 1191950 1191955 1191960 1191965 1191970 1191975 1191980 1191985

GG T C T C A AGAGCGGAGG T A T GCC A A C A C A CC A T T A AG T A CC A T T CCC A T AGC T A A CC T T GA A A T GC T GA C T T GC AGGC A C A CGA A A CGGCGG T CCG T

FlyBase Protein-Coding Genes
CG5001

a fruitfly gene

--->

example from fruit fly

exon

intron

← exon

intron →

AGGTGAG

donor splice site (DSS) signal

acceptor splice site (ASS) signal

← intron

exon →

GCAG

branch point region

Frequency of the nucleotides at positions relative to splice site.

from green algae *Chlamydomonas*
Branch point: upstream of 3’ splice site, a single conserved adenine at variable distance to 3’ splice site (≈ -30), a splicing complex binds to it, pyrimidine (C,T) rich in human
Transcription start site: Transcription from DNA to RNA by RNA polymerase starts here facilitated by **promoter** elements. Promoter elements are diverse and their profiles tend to contain little info:

- diverse transcription factor binding sites at very variable positions
- sometimes **TATA-box**
- “**CpG islands**”
Transcription termination site (TTS):

- **cleavage** of the transcript.
- **some non-templated A’s are appended** (polyadenylation).
- **polyadenylation** is triggered in many species in many genes by the hexamer **aataaa** roughly 15 bp upstream of the TTS.
Start and stop codon:

- **start codon**: ATG
- **stop codons**: TAA, TAG, TGA

In some species the genetic code is altered and a “stop codon” is actually coding for an amino acid.
Nucleotide Composition of Coding and Noncoding Regions

Sequence Content

Besides the signals, position-unspecific frequencies of nucleotide patterns can be used to guess biological classification (e.g. CDS, non-coding, CpG-island) of longer sequence intervals.

Example (GC content in red flour beetle)

Typically, higher order patterns are examined:
E.g. reading-frame dependent k-mer frequencies ($k = 5, 6$) for protein-coding regions.

Remark

Sequence content is usually only indirect evidence.
Problems and General Ansatz

Problems
- known signal models do not carry much information
- false positive signals because of low number of true positives
- sequence content can be misleading (pseudogenes, repeats)

Ansatz
- **combine** all individual weak info to boost discriminatory power
- **enforce standard** gene structure:
 - reading frame consistency between exons
 - minimal splice site consensus (GT/AG, maybe GC/AG)
 - no in-frame stop codons
 - minimal intron length (≈ 40 bp)
The One-Dimensional Chaining Problem

Definition

Let $\mathcal{B} = \{B_1, B_2, \ldots, B_n\}$ be a set of intervals with boundaries given by $B_j = [\ell_j, r_j)$ and $\ell_j < r_j$, $(j = 1, \ldots, n)$.

Let $s_j \in \mathbb{R}$ be the score of interval B_j.

A chain $\Gamma = (B_{j_1}, B_{j_2}, \ldots, B_{j_d})$ is a sorted sequence of non-overlapping intervals (i.e. $r_{j_i} \leq \ell_{j_{i+1}}$).

The score of a chain is the sum of the scores of its intervals:

$$s(\Gamma) = \sum_{i}^{d} s_{j_i}$$

Definition (One-dimensional Chaining Problem)

For a given set of scored intervals \mathcal{B} find a chain with maximal score.
Example Chaining Problem

Example

\[B_1 = [0, 1), s_1 = 1 \]
\[B_2 = [0, 3), s_2 = 2 \]
\[B_3 = [2, 4), s_3 = 2 \]
\[B_4 = [2, 6), s_4 = 2 \]
\[B_5 = [5, 8), s_5 = 3 \]
\[B_6 = [7, 8), s_6 = 2 \]
\[\mathcal{B} = \{B_1, \ldots, B_6\} \]

\[\Gamma = (B_1, B_3, B_5) \] is the chain with maximal score.
Example Chaining Problem

Example

\[B_1 = [0, 1), s_1 = 1 \]
\[B_2 = [0, 3), s_2 = 2 \]
\[B_3 = [2, 4), s_3 = 2 \]
\[B_4 = [2, 6), s_4 = 2 \]
\[B_5 = [5, 8), s_5 = 3 \]
\[B_6 = [7, 8), s_6 = 2 \]
\[\mathcal{B} = \{B_1, \ldots, B_6\} \]

\[\Gamma = (B_1, B_3, B_5) \text{ is the chain with maximal score.} \]
How to Solve the Chaining Problem?

- **brute force** too slow: There are 2^n possible chains.
- **greedy** approach does not correctly solve the problem:

\[
\Gamma \leftarrow ()
\]

repeat

insert highest-scoring interval into Γ that does not overlap any interval already in Γ

until no more interval can be inserted

trivial counterexample:

\[
\begin{align*}
\underline{2} & & \underline{3} \\
B_1 & & B_2 & & B_3 \\
2 & & 2
\end{align*}
\]
Chaining Algorithm

One-Dimensional Chaining Algorithm

1: \(P \leftarrow \text{sort} \{\ell_1, r_1, \ell_2, r_2, \ldots, \ell_n, r_n\} \) increasingly
2: \(S \leftarrow q \leftarrow q_1 \leftarrow \cdots \leftarrow q_n \leftarrow S_1 \leftarrow \cdots S_n \leftarrow 0 \)
3: \textbf{while} \(P \) not empty \textbf{do}
4: \(b \leftarrow \text{remove smallest element in} \ P \)
5: \(\textbf{for all} \ j \text{ such that} \ r_j = b \) \textbf{do}
6: \(\quad \text{if} \ S_j > S \text{ then} \)
7: \(\quad \quad S \leftarrow S_j \)
8: \(\quad \quad q \leftarrow j \)
9: \(\quad \text{end if} \)
10: \(\text{end for} \)
11: \(\textbf{for all} \ j \text{ such that} \ \ell_j = b \text{ do} \)
12: \(\quad S_j \leftarrow s_j + S \)
13: \(\quad q_j \leftarrow q \)
14: \(\text{end for} \)
15: \(\textbf{end while} \)
16: \(\text{output} \ S \text{ as score of best chain} \)
Chaining Algorithm

Backtracking

17: \(\Gamma \leftarrow () \)
18: while \(q \neq 0 \) do
19: push \(B_q \) onto \(\Gamma \)
20: \(q \leftarrow q_q \)
21: end while
22: reverse order of \(\Gamma \)
23: output \(\Gamma \) as highest-scoring chain
Correctness

Invariants of the Algorithm

1. After every iteration of the main loop in line 3, S is the score of the best chain without interval boundaries beyond b.

2. After every iteration of the main loop in line 3, S_j is the score of the best chain, that ends with interval B_j for all j with $\ell_j \leq b$.

Proof by induction on the iteration of the main loop in line 3. It follows that after the last iteration S is the score of the overall best chain.

Pointers for Backtracking

Unless undefined ($q_j = 0$), q_j is the index of the interval immediately left of B_j in a best chain that contains B_j.
Example Algorithm Run

Example

After initialization (line 2):

\[P = (0, 1, 2, 3, 4, 5, 6, 7, 8) \]
\[S = 0 \]
\[q = 0 \]
Example Algorithm Run

Example

After 1st iteration of main loop (line 3):

\[S = 0 \]
\[q = 0 \]

\[0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \]

\[S_1 = 1, \quad q_1 = 0 \]
\[B_1, s_1 = 1 \]

\[S_2 = 2, \quad q_2 = 0 \]
\[B_1, s_2 = 2 \]

\[B_2, s_4 = 2 \]
\[B_3, s_3 = 2 \]

\[B_4, s_4 = 2 \]
\[B_5, s_5 = 3 \]

\[B_6, s_6 = 2 \]

\[b = 0 \]
Example Algorithm Run

Example

After 2nd iteration of main loop (line 3):

\[S = 1 \]
\[q = 1 \]
Example Algorithm Run

Example

After 3rd iteration of main loop (line 3):
\[S = 1 \]
\[q = 1 \]
Example Algorithm Run

Example

After 4th iteration of main loop (line 3):

\[S = 2 \]
\[q = 2 \]
Example Algorithm Run

Example

After 5th iteration of main loop (line 3):
$S = 3$
$q = 3$

\[
\begin{align*}
S_1 &= 1, q_1 = 0 \\
B_1, s_1 &= 1 \\
S_2 &= 2, q_2 = 0 \\
B_1, s_2 &= 2 \\
S_3 &= 3, q_3 = 1 \\
B_3, s_3 &= 2 \\
S_4 &= 3, q_4 = 1 \\
B_4, s_4 &= 2 \\
B_5, s_5 &= 3 \\
B_6, s_6 &= 2 \\
\end{align*}
\]

$b = 4$
Example Algorithm Run

Example

After 6th iteration of main loop (line 3):

\[S = 3 \]
\[q = 3 \]

\[S_1 = 1, \quad q_1 = 0 \]
\[B_1, s_1 = 1 \]

\[S_2 = 2, \quad q_2 = 0 \]
\[B_1, s_2 = 2 \]

\[S_3 = 3, \quad q_3 = 1 \]
\[B_3, s_3 = 2 \]

\[S_4 = 3, \quad q_4 = 1 \]
\[B_4, s_4 = 2 \]

\[S_5 = 6, \quad q_5 = 3 \]
\[B_5, s_5 = 3 \]

\[b = 5 \]
Example Algorithm Run

Example

After 7th iteration of main loop (line 3):

\[S = 3 \]
\[q = 3 \]
Example Algorithm Run

Example

After 8th iteration of main loop (line 3):

\[S = 3 \]
\[q = 3 \]
Example Algorithm Run

Example

After last iteration of main loop (line 3):

\[S = 6 \]

\[q = 5 \]
Example Algorithm Run

Example

Backtracking:
Follow q_j pointers starting from $q = 5$ until $q = 0$.
$\Gamma = (B_1, B_3, B_5)$

\begin{align*}
S_1 &= 1, q_1 = 0 \\
B_1, s_1 &= 1 \\
S_2 &= 2, q_2 = 0 \\
B_1, s_2 &= 2 \\
S_3 &= 3, q_3 = 1 \\
B_3, s_3 &= 2 \\
S_4 &= 3, q_4 = 1 \\
B_4, s_4 &= 2 \\
S_5 &= 6, q_5 = 3 \\
B_5, s_5 &= 3 \\
S_6 &= 5, q_6 = 3 \\
B_6, s_6 &= 2
\end{align*}
Running Time

Running Time

Sorting of interval boundaries (line 1): $O(n \log n)$
Overall time in main loop (lines 3-15): $O(n)$
Backtracking: $O(n)$
Overall running time: $O(n \log n)$

Remarks:

- The linear running time of the main loop can be realized when for each interval boundary in P a list of intervals ending and starting at b is stored. For each interval the loops 5-10 and 11-14 are then executed exactly once each (amortized analysis).

- Special but important case: the intervals have integers as boundaries (sequence positions) in the range $1..t$ ⇒ sorting can be done in $O(t + n)$ using Bucket Sort ⇒ faster if $t = o(n \log n)$ (dense intervals)
Simple Approach to Gene Finding

- only predict protein-coding part of genes (easier)
- interpret gene structure as chain of CDS
- gene boundaries are implied by CDS boundaries (stop codon)
- CDS candidate defined by sequence (integer) interval $B_j = [\ell_j, r_j)$

score j-th CDS candidate:

$$s_j = \text{score of signal at } \ell_j \quad \text{(e.g. ASS or start codon)}$$
$$+ \text{score of signal at } r_j \quad \text{(e.g. DSS or stop codon)}$$
$$+ \text{score of sequence content in } [\ell_j, r_j)$$

- find highest-scoring chain of CDS as gene prediction
Simple Approach to Gene Finding

Signal Score

A number s assigned to a sequence position p that is used to decide whether the signal is present at p. Usually: $s = s(w)$, where w is a sequence window around p.

Aims:

1. The larger the score, the more likely is it that there is a true signal.
2. $s(w)$ is “small” for positions p without the signal.
Example Signal Score

Example (DSS position weight matrix)

$p =$ candidate donor splice site position

$w =$ seq window 2 pos upstream and 5 pos downstream of DSS

Have position specific scoring matrix for DSS

$$m(i, b) \quad (i = 1, 2, \ldots, 7, \ b \in \{A,C,G,T\})$$

$$m(i, A) + m(i, C) + m(i, G) + m(i, T) = 1$$

Have “background” distribution of nucleotides $q(b)$

$$q(A) + q(C) + q(G) + q(T) = 1$$

Define log-odds score: $s = \log \prod_{i=1}^{7} \frac{m(i, w_i)}{q(w_i)}$
Example Content Score

Base composition is frame-dependent

<table>
<thead>
<tr>
<th></th>
<th>f = 0</th>
<th>f = 1</th>
<th>f = 2</th>
<th>all f</th>
<th>noncoding sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.248</td>
<td>0.291</td>
<td>0.146</td>
<td>0.229</td>
<td>0.26</td>
</tr>
<tr>
<td>C</td>
<td>0.264</td>
<td>0.243</td>
<td>0.351</td>
<td>0.286</td>
<td>0.24</td>
</tr>
<tr>
<td>G</td>
<td>0.321</td>
<td>0.201</td>
<td>0.312</td>
<td>0.278</td>
<td>0.24</td>
</tr>
<tr>
<td>T</td>
<td>0.166</td>
<td>0.265</td>
<td>0.190</td>
<td>0.207</td>
<td>0.26</td>
</tr>
</tbody>
</table>

nucleotide frequencies in human:
- **coding sequence**
- **noncoding sequence**

Gene Finding with HMMs

<table>
<thead>
<tr>
<th></th>
<th>f = 0</th>
<th>f = 1</th>
<th>f = 2</th>
<th>all f</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.248</td>
<td>0.291</td>
<td>0.146</td>
<td>0.229</td>
</tr>
<tr>
<td>C</td>
<td>0.264</td>
<td>0.243</td>
<td>0.351</td>
<td>0.286</td>
</tr>
<tr>
<td>G</td>
<td>0.321</td>
<td>0.201</td>
<td>0.312</td>
<td>0.278</td>
</tr>
<tr>
<td>T</td>
<td>0.166</td>
<td>0.265</td>
<td>0.190</td>
<td>0.207</td>
</tr>
</tbody>
</table>
Example Content Score

Example (frame-dependent Markov chain of order k)

Let w be the DNA word of length n to be scored as CDS. Let $f \in \{0, 1, 2\}$ be the frame of the first position of w.

$$P(w) := p_f(w_1, \ldots, w_k) \cdot \prod_{i=k+1}^{n} p_{f(i)}(w_i \mid w_{i-k}, \ldots, w_{i-1})$$

- p_f is a start probability for the first k bases

Here:

- $f(i) \in \{0, 1, 2\}$ such that $f(i) \equiv f - 1 + i \mod 3$

is the frame of the i-th position of w.

Define $s(w) = \log(P(w)/Q(w))$, where $Q(w)$ is the probability of w in a “background” model (e.g. non-coding).

Remark: division by background \Rightarrow good exon candidates get positive score
Example Content Score - Continued

Example

\[w = \text{ATTCTGC} \]

frame \(f = 2 \), i.e. with these codon breaks: \(\text{A}||\text{TTC}||\text{TGC} \)

\(k = 2 \)

\[
P(\text{ATTCTGC}) = p_2(\text{AT})p_1(\text{T} | \text{AT})p_2(\text{C} | \text{TT})
\]

\[
p_0(\text{T} | \text{TC})p_1(\text{G} | \text{CT})p_2(\text{C} | \text{TG})
\]

- if \(k \geq 2 \) above content model can reflect codon usage
- typical: \(k = 4 \) or \(k = 5 \)
- probabilities \(p_r(x | y_1, \ldots, y_k) \) can be estimated on known coding sequences
Problems with Simple Approach

- reading frame consistency not enforced
- ⇒ output can be biologically “senseless”
- ⇒ less accurate when this info is ignored
- CDS candidates with negative score are never used

Need extension to chaining algorithm to enforce consistency.
Exon Chaining/Assembly

Example (exon candidates in a DNA of length 2000)

- color at left and right end (red, green, blue)
 specify exon phase at left and right end
- arrow tips and heads denote start and stop codons

exon candidates of the program GENEID
Consistent Exon Chain

Extension of Algorithm

It is possible to extend the chaining algorithm so that it only considers **consistent chains**:

Every two consecutive exons in a chain must be (frame-)compatible.

Example

\[
\begin{array}{c}
suc(1) = f0+ = pre(2) \quad suc(2) = f2+ = pre(3) \quad suc(3) = boundary = pre(4) \quad suc(4) = f2− = pre(5)
\end{array}
\]
Issues of the Exon Chaining Approach

Problematic:

- **introns** are not modeled at all:
 - no length distribution considered
 - no difference to intergenic region

- **UTRs**: How can one accommodate for exons like these?

- dividing by *background* probability implicitly assumes that there are only two alternatives, *e.g.* exon ↔ noncoding but there are more than two alternatives for a region

A HMM is a \textit{probabilistic model} of a word \(y = y_1 y_2 \cdots y_n \) ("\textit{emission}") over some alphabet \(\Sigma \) and of a \textit{state} sequence \(x = (x_1, x_2, \cdots, x_n) \) over some discrete set of states \(Q \).

The joint distribution of \(x \) and \(y \) is of the form

\[
P(x, y) = \prod_{i=1}^{n} p(x_i|x_{i-1}) \cdot p(y_i|x_i),
\]

where the \(p(x_i|x_{i-1}) \) are the \textit{transition} probabilities of a Markov chain and the \(p(y_i|x_i) \) are \textit{emission} probabilities.

\(x_0 \) is a start state to simplify notation.
Reminder: Hidden Markov Model

Algorithms

- In applications, normally y is observed and x is unobserved/hidden.
- The Viterbi algorithm computes a most likely state sequence $\hat{x} \in \text{arg max}_x P(x|y)$ in time $O(n)$ (assuming here and below that the number of states is a constant).
- The Forward algorithm can be used to compute $P(x, y)$ in time $O(n)$.
- The Forward and Backward algorithms can be used to compute posterior probabilities $P(x_i = q|y)$ in time $O(n)$.
Hidden Markov Model for Eukaryotic Gene Prediction

Example
Reminder: Generalized Hidden Markov Model

Why GHMMs?

• A HMM is a **special case of a GHMM**.
• In **gene finding** and for **alignment** tasks, GHMMs are often used because
 1. they allow a detailed **modeling of the length distribution of exons and other biological intervals**
 2. they accommodate for “silent” or “delete” states required to model alignment gaps
Generalized Hidden Markov Model

Definition (Parse)

Let $y = y_1y_2 \cdots y_n$, Σ, Q be as before. A parse x of y is a sequence

$$x = ((q_1, v_1), (q_2, v_2), \ldots, (q_t, v_t)),$$

with $q_i \in Q, v_i \in \mathbb{N}_0$ such that $v_1 \leq v_2 \leq \cdots \leq v_t = n$.

- observe that y decomposes via x into
 $$y = y(v_0, v_1)y(v_1, v_2)\cdots y(v_{n-1}, v_n) \quad (v_0 := 0)$$
- we say that state “q_i ends at v_i”
- we call $d_i := v_i - v_{i-1}$ the length of the i-th emission
Generalized Hidden Markov Model (Semi-HMM)

Definition (GHMM)

A GHMM is a joint distribution of a **word** y and a **parse** x of y of the form

$$P(x, y) = \prod_{i=1}^{t} P_{\text{trans}}(q_i | q_{i-1}) \cdot P_{\text{emi}}(y(v_{i-1}, v_i) | q_i),$$

where $P_{\text{trans}}(\cdot | q)$ is a probability distribution (**transition probabilities**) over Q for all $q \in Q$ and where $P_{\text{emi}}(\cdot | q)$ is a probability distribution (**emission probabilities**) over Σ^* for all $q \in Q$.

q_0 is a special **start state**

$\Sigma^* = \{ \text{all strings with letters in } \Sigma \}$ (includes empty string)

Remark: We explicitly allow $d_i = 0$. A state q with $P_{\text{emi}}(\epsilon | q) = 1$ is called a **silent state** (ϵ is the empty string of length 0).
When is a GHMM called a HMM?

- A HMM is a GHMM in which $d_i \equiv 1$ for all i, i.e. all emissions are a single character. In that special case the parse x can be identified with the state sequence, which has the same length as y.

- Sometimes in the literature a GHMM, in which $d_i \in \{0, 1\}$, is still called a HMM only with some special modifications to the algorithms. Example: “delete” state in profile HMMs.
Algorithms for GHMM

Algorithms

1. Usually, the word y is observed. Now: A concatenation of the emissions, not the sequence of emissions. Contrast to HMM: The emissions cannot be inferred from y alone.

2. x is unobserved, neither the states nor their boundaries are known.

3. Analogous Viterbi, Forward and Backward algorithms exist that all run in $O(n^2)$. Important special case: they run in $O(n)$ if all d_i are bounded from above by a constant.

4. A prerequisite for point 3 above is that no loops of states with empty-word-emissions are possible. We will ensure that by the design of the model topology.
A Simple GHMM for Gene Finding: Model Topology

Model for (multiple) eukaryotic genes on forward strand:

(Arrows denote the transitions with non-zero transition probability.)
What (Most) Eukaryotic Species Have in Common?

In Common:

- same genetic code, including start and stop codons
- genes can have introns, may have many
- genes rarely overlap in sequence
- introns start almost always with GT, end with AG (some introns GC/AG)
- more non-coding sequence than coding sequence
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region

 top: human / bottom: fly
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region
- GC content highly variable
- number and length distribution of introns

top: human / bottom: *C. elegans*
How Species-Specific Must Gene Finding Models Be?

Differences:

- distribution at signals, e.g. branch point region
- GC content highly variable
- number and length distribution of introns
- length distribution of UTRs
- gene density
Training: Estimate Species-Specific Parameters

“Training Set”

- input: set of annotated sequences

\[(x^{(k)}, y^{(k)})_{k=1,...,N},\]

such that the parse \(x^{(k)}\) represents the gene structure of DNA sequence \(y^{(k)}\).

- frequently a few hundred genes constructed from cDNA alignments