Molekulare Evolution

Vorlesung *Molekulare Evolution* vom 15.11.2011

Mario Stanke
Institut für Mathematik und Informatik
Universität Greifswald
Models for protein sequences

GTR for amino acids

- state space \{ARNDCQEGHILKMFPS TWYV\}
- rate matrix

\[
Q = \begin{pmatrix}
- & q_{AR} & q_{AN} & q_{AD} & \cdots & q_{AV} \\
q_{RA} & - & q_{RN} & q_{RD} & \cdots & q_{RV} \\
& \vdots & \ddots & \vdots \\
q_{VA} & q_{VR} & q_{VN} & q_{VD} & \cdots & -
\end{pmatrix}
\]

where equilibrium frequencies satisfy \(P_i q_{ij} = P_j q_{ji}\).

- \(19 + 19 \cdot 20/2 = 209\) free parameters
 (equilibrium distribution + one factor per pair \(i \neq j\))
- requires large training set
PAM Matrix

PAM 001

- Dayhoff, Schwartz, Orcutt (1979)
- based on 1572 changes of amino acids in very closely related proteins
- chose small observed distance $p = 0.01$ so that double-mutations negligible and phylogenetic distance $d \approx p$
- table of $P(0.01) = (P_{ij}(0.01))_{ij}$
- PAM 250: $P(2.5) = P(0.01)^{250}$ = transition probabilities, when expected 2.5 mutations per site, has only 80% expected observed distance
PAM (probability of accepted mutation)

\[
\text{transpose of } 10000 \cdot P(0.01) = 10000 \cdot e^{Q \cdot 0.01}
\]

A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V	
Ala	Arg	Asn	Asp	Cys	Gln	Glu	Gly	His	Ile	Leu	Lys	Met	Phe	Pro	Ser	Thr	Trp	Tyr	Val	
9867	2	9	10	3	8	17	21	2	6	4	2	6	2	22	35	32	0	2	18	
1	9913	1	0	1	10	0	0	0	10	3	1	19	4	1	4	6	1	8	0	1
4	1	9822	36	0	4	6	6	21	3	1	13	0	1	2	20	9	1	4	1	
6	0	42	9859	0	6	53	6	4	1	0	3	0	0	1	5	3	0	0	1	
1	1	0	0	9973	0	0	0	1	1	0	0	0	0	1	5	1	0	3	2	
3	9	4	5	0	9876	27	1	23	1	3	6	4	0	6	2	2	0	0	1	
10	0	7	56	0	35	9865	4	2	3	1	4	1	0	3	4	2	0	1	2	
21	1	12	11	1	3	7	9935	1	0	1	2	1	1	3	21	3	0	0	5	
1	8	18	3	1	20	1	0	9912	0	1	1	0	2	3	1	1	1	4	1	
2	2	3	1	2	1	2	0	0	9872	9	2	12	7	0	1	7	0	1	33	
3	1	3	0	0	6	1	1	4	22	9947	2	45	13	3	1	3	4	2	15	
2	37	25	6	0	12	7	2	2	4	1	9926	20	0	3	8	11	0	1	1	
1	1	0	0	0	2	0	0	0	5	8	4	9874	1	0	1	2	0	0	4	
1	1	1	0	0	0	0	0	1	2	8	6	0	4	9946	0	2	1	3	28	
13	5	2	1	1	8	3	2	5	1	2	2	1	1	9926	12	4	0	0	2	
28	11	34	7	11	4	6	16	2	2	1	7	4	3	17	9840	38	5	2	2	
22	2	13	4	1	3	2	2	1	11	2	8	6	1	5	32	9871	0	2	9	
0	2	0	0	0	0	0	0	0	0	0	0	1	0	1	0	9976	1	0		
1	0	3	0	3	0	1	0	4	1	1	0	0	21	0	1	1	2	9945		
13	2	1	1	3	2	2	2	3	3	57	11	1	17	1	3	2	10	0	2	

Felsenstein, “Inferring Phylogenies”

- have used rooted tree: not time-reversible
Rate and substitution matrices

<table>
<thead>
<tr>
<th>Rate matrix</th>
<th>Substitution matrix</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Q, such that $P_{ij}(t) = e^{Qt}[i,j]$</td>
<td>• $S = (s_{ij})$, used to score alignment of amino acids i and j</td>
</tr>
<tr>
<td>• used for trees and distances</td>
<td>• different matrices for different degrees of divergence (e.g. BLOSUM{62,45,80})</td>
</tr>
</tbody>
</table>

Converting a rate matrix to a substitution matrix

Q determines equilibrium probabilities P_i. Choose a t. Then

$$s_{ij} := \log \frac{\text{prob. of } i, j \text{ related}}{\text{prob. of } i, j \text{ unrelated}} = \log \frac{P_i P_{ij}(t)}{P_i P_j} = \log \frac{P_{ij}(t)}{P_j} \tag{1}$$

can define a scoring matrix. The log-odds score (1) is often also used directly to construct a substitution matrix from MSAs. In general, a substitution matrix cannot be turned into a rate matrix.
Protein Evolution
Amino Acid Substitution Models
Codon Substitution Models
Estimating $\omega = d_N / d_S$
Standard Genetic Code

AA = FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRIIIMTTTTNKKSSRRVVVVAAAAADDEEGGGG
base1 = TTTTTTTTTTTTTTTTTCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGGGGG
base2 = TTTTCCCAAAAAAGGGGTTTTTCCCCAAAAGGGGTGTTTTCCCCAAAAAGGGGGTTTTTCCCCAAAAGGGGG
base3 = TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

One-letter-codes for amino acids, * = stop codon

Synonymous/nonsynonymous

- **synonymous** mutation, e.g. TTT → TTC
- **nonsynonymous** mutation, e.g. TTT → ATT
- transitions overrepresented among synonymous mutations
- Jukes-Cantor model ⇒ 25.5% of mutations are synonymous
- transition/transversion ratio $\kappa = 5$ ⇒ 30.9% of mutations are synonymous
Amino acid versus codon model

- **synonymous** mutations not visible in amino acid sequence
- codon substitution model can be chosen to
 - have fewer parameters
 - account for transition/transversion ratio
 - equilibrium nucleotide frequencies
- closely related \Rightarrow nucleotide sequence better
- remotely related \Rightarrow may choose amino acid model or parameter-rich codon model
try both
Codon Substitution Models

Model distinguishing transitions/transversions and synonymous/nonsynonymous substitutions

GY94 (Goldman, Yang), Rate matrix Q:

\[
q_{ij} = \begin{cases}
0, & \text{if } i \text{ and } j \text{ differ at more than one position} \\
P_j, & \text{if } i \text{ and } j \text{ differ by a synonymous transversion} \\
\kappa P_j, & \text{if } i \text{ and } j \text{ differ by a synonymous transition} \\
\omega P_j, & \text{if } i \text{ and } j \text{ differ by a nonsynonymous transversion} \\
\omega \kappa P_j, & \text{if } i \text{ and } j \text{ differ by a nonsynonymous transition}
\end{cases}
\]

$i \neq j$ sense codons (state space has 61 states)

P_j: equilibrium probability of codon j

By construction, this model is time-reversible: $P_i q_{ij} = P_j q_{ji}$

Typically, $\kappa > 1$, $\omega < 1$.

Example 1

$q_{\text{TTT,TTC}} = \kappa P_{\text{TTC}}$ (syn. transition), $q_{\text{AGA,CGA}} = P_{\text{CGA}}$ (syn. transversion)
$q_{\text{TTT,CTT}} = \omega \kappa P_{\text{CTT}}$ (nonsyn. transition), $q_{\text{TCT,AGT}} = 0$ (>1 mutation)
Codon Substitution Models

Choices for equilibrium distribution

1. \(P_j = 1/61 \) for all non-stop codons \(j \) (2 free parameters)

2. Codon \(xyz \) has equilibrium probability

\[
P_{xyz} = \frac{q_x q_y q_z}{\sum_{\text{non-stop codons } abc} q_a q_b q_c}
\]

where e.g. \(q_a \) is the equilibrium probability of nucleotide \(a \) (5 free parameters)

3. Codon \(xyz \) has equilibrium probability

\[
P_{xyz} = \frac{q_x^0 q_y^1 q_z^2}{\sum_{\text{non-stop codons } abc} q_a^0 q_b^1 q_c^2}
\]

where \(q_a^i \) is the equilibrium probability of nucleotide \(a \) at frame position \(i \) (11 free parameters)

4. All \(P_j \) are parameters (62 free parameters)
Codon Substitution Models

More general rate matrices

- above codon substitution model does not account for amino acid similarities
- the GTR for codons has \(60 + 60 \cdot 61/2 = 1890 \) free parameters
- usually too many to estimate independently for specific data set
- dimensionality reduction through principal component analysis (PCA)
Codon Substitution Models

Selective pressure depends on the site s and on the branch b

$$q_{ij} = \begin{cases}
0 & \text{, if } i \text{ and } j \text{ differ at more than one position} \\
\kappa P_j & \text{, if } i \text{ and } j \text{ differ by a synonymous transversion} \\
\omega_s P_j & \text{, if } i \text{ and } j \text{ differ by a synonymous transition} \\
\omega_s^b P_j & \text{, if } i \text{ and } j \text{ differ by a nonsynonymous transversion} \\
\omega_s^b \kappa P_j & \text{, if } i \text{ and } j \text{ differ by a nonsynonymous transition}
\end{cases}$$

For example,

- Some sites s may be under positive selection while most sites of the same gene are under negative selection.
- Influenza from different hosts: may be higher selective pressure on the branch separating sequences from different hosts (adaptation required).

Can’t estimate ω_s^b for all site/branch combinations individually.

- One may want to consider branch classes for b, e.g., using different habitats.
- Interest in (small number of) sites s with positive selection.
Selection

Positive/negative selection

- **negative selection**, purifying selection
 - $\omega < 1$
 - (amino acid) changes reduce fitness and are selected against

- **positive selection**
 - $\omega > 1$
 - **example**: directional selection, allele frequency in a population shifts continuously in one direction
 - HIV-1 in a patient with antiretroviral drugs
 - size of black bears responded to climate changes
 - **example**: balancing selection
 - heterozygote advantage: sickle cell anemia/malaria
 - negative frequency-dependent selection: prey switching

- **neutral evolution**
 - $\omega \approx 1$
 - mutations not effecting fitness, e.g. “gene” not functional
Estimating $\omega = d_N/d_S$

Alignment

1. align sequences on protein level (translate nuc. seqs)
2. obtain induced alignment of nucleotide sequences
3. for each codon, ignore sequences with a gap (to avoid complications)

2 ways

1. ML-estimation of evolutionary codon substitution model:

$$\ln L = \sum_i \sum_j n_{ij} \ln P_i P_{ij}(t) \rightarrow \text{max}$$

(summation over i and j goes over the 61 sense codons n_{ij}: number of times, codons i and j are aligned.
Also works for multiple alignment and evolution along a tree.
The function in (2) has 3 parameters (ω, τ, t) and can be optimized numerically (P_i’s estimated directly from observed counts).

2. heuristic counting method for pairwise sequence comparison
Estimating $\omega = d_N/d_S$

Heuristic counting method for pairwise sequence comparison

- d_S: estimate of the number of **synonymous** substitution per “synonymous sites”
- d_N: estimate of the number of **nonsynonymous** substitution per “nonsynonymous sites”

1. count synonymous and nonsynonymous “sites” (S, N)
2. count synonymous and nonsynonymous differences (D_S, D_N)
3. correct for difference between observed and genetic distance (d_N, d_S)
Estimating $\omega = d_N/d_S$

Example 2

<table>
<thead>
<tr>
<th>human</th>
<th>H</th>
<th>G</th>
<th>G</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>human</td>
<td>CAC</td>
<td>GGT</td>
<td>GGG</td>
<td>CCA</td>
<td>AAG</td>
</tr>
<tr>
<td>mouse</td>
<td>CAT</td>
<td>GGT</td>
<td>GGC</td>
<td>CCA</td>
<td>GCG</td>
</tr>
<tr>
<td>mouse</td>
<td>H</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>A</td>
</tr>
</tbody>
</table>

Counting sites:

Of the 9 single-base mutations of CAC 1 is synonymous (to CAT) and 8 are nonsynonymous. Count $3 \cdot \frac{1}{9}$ synonymous and $3 \cdot \frac{8}{9}$ nonsynonymous sites.

<table>
<thead>
<tr>
<th>sites</th>
<th>CAC</th>
<th>GGT</th>
<th>GGG</th>
<th>CCA</th>
<th>AAG</th>
<th>CAT</th>
<th>GGC</th>
<th>GCG</th>
</tr>
</thead>
<tbody>
<tr>
<td>S synonymous</td>
<td>$\frac{3}{9}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{3}{8}$</td>
<td>$\frac{3}{9}$</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>N nonsynonymous</td>
<td>$\frac{24}{9}$</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>$\frac{21}{8}$</td>
<td>$\frac{24}{9}$</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Beware: stop codons do not count. Sum over codons in sequence, average over sequences and scale so that the total number of sites is $N + S =$ sequence length.

$N = \frac{527}{48} \approx 10.98$, $S = \frac{193}{48} \approx 4.02$, $N + S = 15$
Estimating $\omega = d_N/d_S$

Example 3

<table>
<thead>
<tr>
<th></th>
<th>human</th>
<th>human</th>
<th>mouse</th>
<th>mouse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H G G P K</td>
<td>CAC GGT GGG CCA AAG</td>
<td>CAT GGT GCC CCA GGC</td>
<td>H G G P A</td>
</tr>
</tbody>
</table>

Counting differences:

2 codons did not change at all (GGT).
2 synonymous one-base changes (CAC - CAT, GGG - GGC).
1 two-base change (AAG - GCG), explained by 2 possible pathways of one-base changes:

<table>
<thead>
<tr>
<th>pathway</th>
<th>syn.</th>
<th>nonsyn</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAG (K) - GAG (E) - GCG (A)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>AAG (K) - ACG (T) - GCG (A)</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Weight all paths equally (here $1/2$, $1/2$) and average \Rightarrow 2 nonsynonymous one-base changes.

total: $D_S = 2$ synonymous differences

$D_N = 2$ nonsynonymous differences.
Estimating $\omega = d_N/d_S$

Example 4

<table>
<thead>
<tr>
<th>Human</th>
<th>H</th>
<th>G</th>
<th>G</th>
<th>P</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human</td>
<td>CAC</td>
<td>GGT</td>
<td>GGG</td>
<td>CCA</td>
<td>AAG</td>
</tr>
<tr>
<td>Mouse</td>
<td>CAT</td>
<td>GGT</td>
<td>GGC</td>
<td>CCA</td>
<td>GCG</td>
</tr>
<tr>
<td>Mouse</td>
<td>H</td>
<td>G</td>
<td>G</td>
<td>P</td>
<td>A</td>
</tr>
</tbody>
</table>

Correct for difference between observed and genetic distance:

Observed distance

\[
p_S = D_S/S \approx 0.50
\]
\[
p_N = D_N/N \approx 0.18
\]

In reality, some mutations may not manifest in differences (e.g. back-mutations). Use correction of JC69 model.

\[
d_S = -\frac{3}{4} \ln(1 - \frac{4}{3} p_S) \approx 0.82
\]
\[
d_N = -\frac{3}{4} \ln(1 - \frac{4}{3} p_N) \approx 0.21
\]

$\hat{\omega} := d_N/d_S = 0.26$ (negative selection)